India’s Tryst with Next-Gen Nuclear Energy Systems

By Dr. Sitakanta Mishra, Pandit Deendayal Petroleum University

By Dr. Sitakanta Mishra
Pandit Deendayal Petroleum University

India’s Tryst with Next-Gen Nuclear Energy Systems

Abstract: India’s advancing breeder reactor program, and the planned Advanced Heavy Water Reactor, both relying on domestically available thorium, will herald the era of next-generation nuclear energy systems in the country. With many embedded distinctive features, they would address effectively India’s energy security and safety concerns, while registering their novelty in the global nuclear discourse.

The Indian nuclear establishment is reportedly in the final throes of developing a (conceptual) design for Advanced Heavy Water Reactor (AHWR), a Technology Demonstrator Reactor of 300 MW, as the stepping stone to the third stage of India’s three-stage nuclear energy program. In December 2016, Government of India is known to have accorded in-principle approval for the Tarapur Maharashtra Site (TMS) for locating the 300MW AHWR. Meanwhile, the 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpakkam, under construction for several years, is now scheduled to be commissioned towards the end of this year. These two developments (PFBR and AHWR) as they mature would herald the era of next-generation reactor systems in India. More importantly, India would be the first country, after Russia, to bring online a commercial fast-breeder reactor.

After the Indo-US nuclear deal was struck, though India has embarked on a nuclear energy expansion route with substantial progress especially on reactor capacity building, its success with the fast-breeder system is a significant achievement and milestone in India’s tryst with safe, secure and sustainable nuclear energy. Meanwhile, the AHWR program, when it matures, would provide the impetus for the development of technologies for the third stage of India nuclear power program” along with wide “experience on the use of thorium fuel on a large and industrial scale.” With the aim of universal electrification with 24x7 electricity and double digit economic growth in the era of energy crisis, while reducing emissions intensity by 33%-35% by 2030, the utilization of abundantly available thorium is a viable option for India in the long-term.

Three-Stage Program


With a foresight to meet India’s future energy demand from perennial source, the visionary nuclear scientist Homi Bhabha had delineated a three-stage route for the country. The first stage, which mainly comprises the Pressurized Heavy Water Reactors (PHWRs), uses the domestic natural uranium as fuel to generate electricity. Currently, a total of 18 PHWRs of 100 MWe to 540 MWe range capacity are in operation. In May 2017 the government approved construction of 10 more units of 700 MWe PHWRs.

In the first stage, natural uranium (U235, 0.72%) undergoes fission and a portion of the remaining U238 gets converted to Pu239; the spent fuel generated from this stage will be reprocessed to recover the Pu239, to be utilized as fuel in the Fast Breeder Reactors (FBRs) in the second stage. The essence of the ‘process to reuse’ nuclear strategy is that it avoids both the buildup of stockpiles as well as the need to store large amounts of spent fuel that could be prone to malefactors. These reactors, “besides using Pu239 as fuel, will also make use of thorium as a blanket in the reactor core. The thorium (Th232) will undergo nuclear mutation in the reactor core to produce U233.”

As part of the Second Stage, India started with the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam. Operating with indigenously developed mixed (U+Pu) carbide fuel, the FBTR has provided required operating experience for designing the 500 MWe PFBR to utilize plutonium and the depleted uranium from our PHWRs. In the long-term, this would help “to make optimum use of India’s vast thorium reserves for sustained power generation to cater to the long-term needs of the nation.”

The good performance of India’s FBTR operating since 1985 provided valuable operating experience and technical inputs which have been handy in fructifying the commercial PFBR stage. Four more PFBRs have been announced for construction by 2020. With the progress in the AHWR, India’s nuclear energy program will enter the third stage of operation. This mammoth program has the potential to provide energy security to the country for a few centuries. As domestic supply is meager, India imports about 40% of its uranium requirements. The volatility of uranium market and the politics involved in its procurement necessitates expediting India’s thorium-based program.

Novelty of Indian AHWRs


Image Attribute: Model of Advanced Heavy Water Reactor, the latest Indian design for a next-generation nuclear reactor / Source: Bhabha Atomic Research Centre (BARC), Department of Atomic Energy(DAE),Government of India

Image Attribute: Model of Advanced Heavy Water Reactor, the latest Indian design for a next-generation nuclear reactor / Source: Bhabha Atomic Research Centre (BARC), Department of Atomic Energy(DAE),Government of India 

In general, the novelty of AHWRs includes, among other things, its advanced and innovative safety features, intrinsic proliferation resistance, cost-effectiveness, and efficiency. Given the concerns of nuclear accidents especially after the Fukushima accident, AHWRs are endowed with all such techniques and arrangements that can address postulated threats, both on design basis and beyond design basis. Therefore, it will not require an ‘exclusion zone’ beyond the plant boundary.

Particularly, with double containment and a passive system for containment isolation, the Indian AHWR300-LEU will be extremely safe. First, “the use of heavy water (as moderator) at low pressure reduces the potential for leakage”, and natural circulation technique (passive means) is used for removal of heat from the reactor core under operating and shutdown conditions. “Gravity Driven Water Pool with an inventory of 7000m3 of water is to be located near the top of the reactor building to remove heat from the core by natural circulation”. In addition, there is an inherent advantage of using high-pressure boiling water as coolant to eliminating the requirement of steam generators.

Image Attribute: Block Diagram of Advanced Heavy Water Reactor (AHWR)
Image Attribute: Block Diagram of Advanced Heavy Water Reactor (AHWR)

The other planned advanced safety features include the provision of two independent shutdown systems (primary and secondary), passive poison injection in moderator in the event of non-availability of both the shutdown systems, making it disaster immune. In terms of reactor physics design, the AHWR300-LEU is based on “negative reactivity coefficients, optimized to achieve high burn-up with the LEU-thorium based fuel with sufficient reactivity for an assured shutdown of the reactor under all accidental conditions.

As far as its efficiency is concerned in comparison to modern Light Water Reactors (LWRs), the AHWR300-LEU requires about 13% less mined natural uranium for the same quantity of energy produced, thus making it a favorable option for efficient utilization of available natural uranium. The reactor is configured to obtain a significant portion of power by fission of U233, derived from in-situ conversion from Th232. On an average, about 39% of the power is obtained from thorium.

More importantly, the AHWR300-LEU is considered intrinsically proliferation resistant as it will use LEU and thorium that will lead to the reduced generation of plutonium in spent fuel with lower fissile fraction and a high fraction of Pu238. The fissile uranium in the “spent fuel amounts to about 8% and it also contains about 200 ppm of U232, whose daughter products produce high-energy gamma radiation.” As bred uranium from Th (U232, U233, etc.) is mixed with U-238 of LEU (called denatured uranium), the system is automatically proliferation resistant.

As far as amicable disposal of the nuclear waste is concerned, the planned AHWR300-LEU seems most desirable as “the Fast reactors operated in a closed fuel cycle help to improve the utilization of resources — both fissile and fertile materials — used in nuclear fuels and contribute to a significant reduction of the burden of generated radioactive waste.” As the quantity of minor actinides in thorium is less, the AHWR produces significantly less minor actinides per unit energy. Moreover, thorium oxide is eminently “suitable for long-term storage because of the inert nature of the matrix.” 

Furthermore, India’s planned AHWR300-LEU, with many advanced features, is expected to reduce environmental impact, capital, and operating costs. With hundred years design life, it can prove to be akshaya patra, “the mythical goblet with the never-ending supply of food.”

The Global Tryst


In the past, many countries laid their hands on the breeder reactor technology but ultimately gave it up. The United States of America discarded reprocessing of nuclear waste altogether. Japan and France (Superphenix reactor from 1985-98) could not handle liquid sodium and failed in its commercialization. China, though has a fast-breeder program, is believed to be more than a decade behind; construction of the Chinese Demonstration Fast Reactors (CDFR) started in 2013 and commissioning is expected in 2018-19.

Only Russia could successfully run commercial fast-breeder reactor named BN 800 (a successor of BN-600 in operation at the Beloyarsk NPP since 1980) that uses both uranium and plutonium as fuel. It is also planning to design a 1200 MW fast breeder reactor.

Thorium as Future


Chart Attribute: Global Thorium Deposit / Source: World Nuclear Association

Chart Attribute: Global Thorium Deposit / Source: World Nuclear Association

Given the prospects of these systems, it would not be an exaggeration to assert that thorium is the key to meeting the burgeoning energy requirements of the entire world; “thorium is more abundant in nature than uranium.” According to the IAEA-NEA publication Uranium 2014, the world’s total thorium reserves amount to 6,355,000 tonnes and India tops the list with 846,000 tonnes alone. Moreover, there is plenty of scope for the use of thorium both in conventional reactors and prospective nuclear systems that are in the conceptual stage currently. They include solid fuelled conventional reactors; molten salt reactors; accelerator-driven subcritical reactors, etc. Though the global uranium reserve of 5,718,400 tonnes can meet the energy requirement of the entire world for the next several decades, it is not devoid of technological risks and geopolitical vagaries.

Especially for India, thorium is available in abundance and it is relatively easily obtainable than uranium which is short supply (184,964 tonnes, 2012). Though new reserves have been found in the state of Andhra Pradesh in the volume of 1,04,042 tonnes (2017), mining them has been difficult for various reasons including the strong local opposition. Reportedly, from 2008 till mid-2016, around 5,559 metric tonnes of uranium has been imported by India from different countries, costing the national exchequer and intense political-diplomatic attention.

In contrast, thorium is available abundantly in India in the Monazite sands of many Indian states like Odisha, Andhra Pradesh, Tamil Nadu, Kerala, West Bengal and Jharkhand. As they are easy to access, the thorium-based program, along with the advantage of overcoming waste disposal, would end India’s dependency on the global uranium market in the long-run.

A Prognosis


Despite the promising future of thorium-based nuclear systems, critics point to several inherent drawbacks. First, though uranium is in short-supply, the post-Fukushima uranium market is not very competitive. Uranium is still available or supplied in plenty by many countries, especially in India after the Indo-US nuclear deal. Secondly, thorium-based programs have been discarded by many countries as they are expensive and time-consuming.

Skeptics believe that “the likelihood of a rapid expansion of nuclear power” in India is very dimThe goal post of the three-stage program (and PFBR) has been shifted several times, and the final shape of the planned AHWR300-LEU is definitely far away; in the worst case, it may not fructify at all. Since the thorium utilization in FBR is a long way off, the AHWR was designed to give a quick start for the technological developments of thorium cycle.

Supporters, on the other hand, highlight the technological advantages of using thorium which will outweigh the perceived disadvantages. In any case, thorium is the most sustainable source of energy when no other easy options are available to the world.

About the Author:

Dr. Sitakanta Mishra is a Faculty of International Relations, School of Liberal Studies (SLS), Pandit Deendayal Petroleum University (PDPU), Gujarat, India.

Cite this Article:

Mishra, S., "India’s Tryst with Next-Gen Nuclear Energy Systems" IndraStra Global Vol. 03, Issue No: 09 (2017), 0008, http://www.indrastra.com/2017/09/India-s-Tryst-with-Next-Gen-Nuclear-Energy-Systems-003-09-2017-0008.html | ISSN 2381-3652

AIDN0020920170008 / INDRASTRA / ISSN 2381-3652 / India’s Tryst with Next-Gen Nuclear Energy Systems
Name

-51,1,3D Technology,2,5G,8,Abkhazia,2,Academics,9,Accidents,19,Activism,1,ADB,12,ADIZ,1,Adults,1,Advertising,30,Advisory,2,Aerial Reconnaissance,11,Aerial Warfare,34,Aerospace,4,Afghanistan,83,Africa,109,Agile Methodology,2,Agriculture,15,Air Crash,9,Air Defence Identification Zone,1,Air Defense,5,Air Force,26,Air Pollution,1,Airbus,4,Aircraft Carriers,5,Aircraft Systems,1,Al Nusra,1,Al Qaida,4,Al Shabab,1,Alaska,1,ALBA,1,Albania,2,Algeria,3,American History,4,AmritaJash,10,Antarctic,1,Anthropology,7,Anti Narcotics,12,Anti Tank,1,Anti-Corruption,3,Anti-dumping,1,Anti-Piracy,2,Anti-Submarine,1,Anti-Terrorism Legislation,1,Antitrust,1,APEC,1,Apple,2,Applied Sciences,2,AQAP,2,Arab League,3,Architecture,1,Arctic,6,Argentina,7,Armenia,26,Army,3,Art,1,Artificial Intelligence,62,Arunachal Pradesh,1,ASEAN,10,Asia,64,Asia Pacific,22,Assassination,2,Asset Management,1,Astrophysics,2,ATGM,1,Atmospheric Science,1,Atomic.Atom,1,Augmented Reality,7,Australia,44,Austria,1,Automation,13,Automotive,124,Autonomous Flight,2,Autonomous Vehicle,2,Aviation,58,AWACS,1,Awards,17,Azerbaijan,14,Azeri,1,B2B,1,Bahrain,9,Balance of Payments,1,Balance of Trade,3,Balkan,10,Baltic,3,Baluchistan,8,Bangladesh,27,Banking,48,Bankruptcy,1,Basel,1,Bashar Al Asad,1,Bay of Bengal,5,BBC,1,Beijing,1,Belarus,3,Belgium,1,Belt Road Initiative,3,Beto O'Rourke,1,BFSI,1,Bhutan,9,Big Data,30,Big Tech,1,Bilateral Cooperation,13,BIMSTEC,1,Biography,1,Biotechnology,2,BISA,1,Bitcoin,7,Black Lives Matter,1,Black Money,2,Black Sea,1,Blockchain,31,Blood Diamonds,1,Bloomberg,1,Boeing,20,Boko Haram,7,Bolivia,6,Bomb,2,Bond Market,1,Book,10,Book Review,17,Border Conflicts,7,Border Control and Surveillance,5,Bosnia,1,Brand Management,14,Brazil,99,Brexit,22,BRI,5,BRICS,16,British,3,Broadcasting,16,Brunei,2,Brussels,1,Buddhism,1,Budget,3,Build Back Better,1,Bulgaria,1,Burma,2,Business & Economy,1004,C-UAS,1,California,5,Call for Proposals,1,Cambodia,6,Cameroon,1,Canada,46,Canadian Security Intelligence Service (CSIS),1,Carbon Economy,8,CAREC,1,Caribbean,9,CARICOM,1,Caspian Sea,2,Catalan,3,Caucasus,9,CBRN,1,Central African Republic,1,Central Asia,74,Central Asian,3,Central Eastern Europe,46,Certification,1,Chad,2,Chanakya,1,Charity,2,Chatbots,1,Chemicals,7,Child Labor,1,Children,4,Chile,10,China,455,Christianity,1,CIA,1,CIS,5,Citizenship,2,Civil Engineering,1,Civil Liberties,4,Civil Rights,2,Civil Society,4,Civilization,1,Clean Energy,4,Climate,62,Climate Change,15,Clinical Research,3,Clinton,1,Cloud Computing,40,Coal,4,Coast Guard,3,Cognitive Computing,12,Cold War,4,Colombia,15,Commodities,3,Communication,8,Communism,3,Compliance,1,Computers,40,Conferences,1,Conflict,80,Conflict Diamonds,1,Conflict Resolution,48,Conflict Resources,1,Congo,1,Construction,4,Consumer Behavior,4,Consumer Price Index,1,COP26,4,Coronavirus,106,Corporate Communication,1,Corporate Governance,4,Corporate Social Responsibility,4,Corruption,4,Costa Rica,2,Counter Intelligence,13,Counter Terrorism,80,COVID,5,COVID Vaccine,5,CPEC,8,CPG,3,Credit,1,Credit Score,1,Crimea,4,CRM,1,Croatia,2,Crypto Currency,12,Cryptography,1,CSTO,1,Cuba,6,Culture,4,Currency,6,Customer Relationship Management,1,Cyber Attack,6,Cyber Crime,2,Cyber Security & Warfare,104,Cybernetics,5,Cyberwarfare,16,Cyclone,1,Cyprus,5,Czech Republic,3,DACA,1,DARPA,3,Data,9,Data Analytics,35,Data Science,2,Database,2,Daughter.Leslee,1,Davos,1,DEA,1,DeBeers,1,Debt,11,Decision Support System,5,Defense,9,Defense Deals,5,Deforestation,2,Democracy,20,Democrats,2,Demonetization,6,Denmark. F-35,1,Denuclearization,1,Diamonds,1,Digital,38,Digital Economy,8,Digital Marketing,2,Digital Transformation,10,Diplomacy,10,Disaster Management,4,Disinformation,1,Diversity & Inclusion,1,Djibouti,2,Documentary,2,Doklam,1,Dokolam,1,Dominica,2,Donald Trump,42,Donetsk,2,Dossier,2,Drones,10,E-Government,2,E-International Relations,1,Earning Reports,2,Earth Science,1,Earthquake,5,East Africa,1,East China Sea,9,eBook,1,ECB,1,eCommerce,11,Econometrics,1,Economic Justice,1,Economics,39,Economy,76,ECOWAS,2,Ecuador,3,Edge Computing,2,Education,61,Egypt,24,Elections,29,Electric Vehicle,11,Electricity,5,Electronics,7,Emerging Markets,1,Employment,12,Energy,309,Energy Policy,28,Energy Politics,24,Engineering,23,England,2,Enterprise Software Solutions,8,Entrepreneurship,15,Environment,46,ePayments,12,Epidemic,6,ESA,1,Ethiopia,3,Eulogy,3,Eurasia,3,Euro,6,Europe,6,European Union,219,EuroZone,5,Exclusive,2,Exhibitions,2,Explosives,1,Export Import,3,F-35,5,Facebook,7,Fake News,3,Fallen,1,FARC,2,Farnborough. United Kingdom,2,FATF,1,FDI,5,Featured,1151,Fidel Castro,1,Fiji,1,Finance,17,Financial Markets,49,Financial Statement,2,Finland,5,Fintech,13,Fiscal Policy,12,Fishery,3,Food Security,22,Forces,1,Forecasting,1,Foreign Policy,12,Forex,2,France,26,Free Market,1,Free Syrian Army,4,Freedom,3,Freedom of Speech,1,FTC,1,Fujairah,97,Fund Management,1,Funding,22,Future,1,G20,6,G24,1,G7,3,Gaddafi,1,Gambia,2,Gaming,1,Garissa Attack,1,Gas Price,16,GATT,1,Gaza,2,GCC,11,GDP,9,GDPR,1,Geneal Management,1,General Management,1,Geo Politics,103,Geography,1,Geoint,14,Geopolitics,5,Georgia,11,Georgian,1,geospatial,8,Geothermal,2,Germany,60,Ghana,3,Gibratar,1,Gig economy,1,Global Trade,88,Global Warming,1,Global Water Crisis,10,Globalization,2,Gold,2,Google,13,Gorkhaland,1,Government,125,GPS,1,Greater Asia,126,Greece,13,Green Bonds,1,Greenland,1,Gross Domestic Product,1,GST,1,Gujarat,6,Gun Control,4,Hacking,4,Haiti,2,Hasan,1,Health,7,Healthcare,71,Heatwave,1,Helicopter,10,Heliport,1,Hezbollah,3,High Altitude Warfare,1,High Speed Railway System,1,Hillary 2016,1,Hillary Clinton,1,Hinduism,2,Hindutva,4,History,10,Home Security,1,Honduras,2,Hong Kong,7,Horn of Africa,5,Housing,11,Houthi,11,Howitzer,1,Human Development,28,Human Resource Management,5,Human Rights,4,Humanitarian,3,Hungary,3,Hunger,3,Hydrocarbon,3,Hydrogen,2,IAEA,2,ICBM,1,Iceland,1,ICO,1,Identification,2,IDF,1,Imaging,2,IMF,68,Immigration,17,Impeachment,1,Imran Khan,1,Independent Media,72,India,536,India's,1,Indian Air Force,18,Indian Army,5,Indian Nationalism,1,Indian Navy,24,Indian Ocean,16,Indices,1,Indo-Pacific,3,Indonesia,17,IndraStra,1,Industrial Accidents,3,Industrial Automation,2,Industrial Safety,4,Inflation,6,Infographic,1,Information Leaks,1,Infrastructure,3,Innovations,22,Insider Trading,1,Insurance,3,Intellectual Property,3,Intelligence,5,Intelligence Analysis,8,Interest Rate,3,International Business,13,International Law,11,International Relations,7,Internet,52,Internet of Things,34,Interview,8,Intra-Government,5,Investigative Journalism,3,Investment,32,Investor Relations,1,IPO,4,Iran,188,Iraq,54,IRGC,1,Iron & Steel,1,ISAF,1,ISIL,9,ISIS,33,Islam,12,Islamic Banking,1,Islamic State,86,Israel,119,IT ITeS,131,Italy,10,Jabhat al-Nusra,1,Jamaica,3,Japan,61,JASDF,1,Jihad,1,Joe Biden,3,Joint Strike Fighter,4,Jordan,7,Journalism,6,Judicial,4,Justice System,3,Kanchin,1,Kashmir,8,Kazakhstan,22,Kenya,5,Kiev,1,Kindle,700,Knowledge Management,3,Kosovo,2,Kurdistan,8,Kurds,10,Kuwait,7,Kyrgyzstan,9,Labor Laws,10,Labor Market,4,Land Reforms,2,Land Warfare,21,Languages,1,Laos,1,Laser Defense Systems,1,Latin America,79,Law,5,Leadership,3,Lebanon,9,Legal,9,LGBTQ,1,Liberalism,1,Library Science,1,Libya,13,Littoral Warfare,2,Livelihood,3,Loans,8,Lockdown,1,Lone Wolf Attacks,2,Lugansk,2,Macedonia,1,Machine Learning,7,Madagascar,1,Mahmoud,1,Main Battle Tank,3,Malaysia,10,Maldives,8,Mali,7,Malware,2,Management Consulting,6,Manpower,1,Manto,1,Manufacturing,14,Marijuana,1,Marine Engineering,3,Maritime,39,Market Research,2,Marketing,38,Mars,2,Martech,9,Mass Media,29,Mass Shooting,1,Material Science,2,Mauritania,1,MDGs,1,Mechatronics,2,Media War,1,Mediterranean,12,MENA,6,Mental Health,4,Mercosur,2,Mergers and Acquisitions,15,Meta,1,Metadata,2,Metals,1,Mexico,10,Micro-finance,4,Microsoft,11,Migration,19,Mike Pence,1,Military,99,Military Exercise,9,Military-Industrial Complex,1,Mining,15,Missile Launching Facilities,5,Missile Systems,51,Mobile Apps,3,Mobile Communications,10,Mobility,4,Modi,7,Moldova,1,Monaco,1,Monetary Policy,5,Money Market,2,Mongolia,8,Monkeypox,1,Monsoon,1,Montreux Convention,1,Moon,4,Morocco,1,Morsi,1,Mortgage,3,Moscow,2,Motivation,1,Mozambique,1,Mubarak,1,Multilateralism,2,Mumbai,1,Muslim Brotherhood,2,Myanmar,25,NAFTA,3,NAM,2,Nanotechnology,4,NASA,13,National Security,5,Nationalism,2,NATO,30,Natural Disasters,10,Natural Gas,29,Naval Base,5,Naval Engineering,19,Naval Intelligence,2,Naval Postgraduate School,2,Naval Warfare,44,Navigation,2,Navy,21,NBC Warfare,2,NDC,1,Negotiations,2,Nepal,12,Neurosciences,6,New Delhi,4,New Normal,1,New York,5,New Zealand,5,News,1055,Newspaper,1,NFT,1,NGO,1,Nicaragua,1,Niger,3,Nigeria,10,Nirbhaya,1,Non Aligned Movement,1,Non Government Organization,4,Nonproliferation,2,North Africa,22,North America,41,North Korea,48,Norway,2,NSA,1,NSG,2,Nuclear,38,Nuclear Agreement,30,Nuclear Doctrine,1,Nuclear Security,44,Obama,3,ObamaCare,2,OBOR,15,Ocean Engineering,1,Oceania,2,OECD,4,OFID,5,Oil & Gas,346,Oil Gas,6,Oil Price,56,Olympics,2,Oman,25,Omicron,1,Oncology,1,Online Education,5,Online Reputation Management,1,OPEC,122,Open Access,1,Open Journal Systems,1,Open Letter,1,Open Source,4,Operation Unified Protector,1,Operational Research,4,Opinion,611,Pacific,5,Pakistan,159,Pakistan Air Force,3,Pakistan Army,1,Pakistan Navy,3,Palestine,21,Palm Oil,1,Pandemic,84,Papal,1,Paper,3,Papers,110,Papua New Guinea,1,Paracels,1,Partition,1,Partnership,1,Passport,1,Patents,2,PATRIOT Act,1,Peace Deal,5,Peacekeeping Mission,1,Pension,1,People Management,1,Persian Gulf,19,Peru,5,Petrochemicals,1,Petroleum,19,Pharmaceuticals,13,Philippines,11,Philosophy,2,Photos,3,Physics,1,Pipelines,5,PLAN,3,Plastic Industry,2,Poland,7,Polar,1,Policing,1,Policy,7,Policy Brief,6,Political Studies,1,Politics,36,Polynesia,3,Population,3,Portugal,1,Poverty,5,Power Transmission,6,President APJ Abdul Kalam,2,Presidential Election,30,Press Release,158,Prison System,1,Privacy,17,Private Equity,1,Private Military Contractors,1,Programming,1,Project Management,4,Propaganda,5,Protests,11,Psychology,3,Public Policy,55,Public Relations,1,Public Safety,7,Publishing,6,Putin,4,Q&A,1,Qatar,101,QC/QA,1,Qods Force,1,Quantum Computing,3,Quantum Physics,4,Quarter Results,2,Racial Justice,2,RADAR,1,Rahul Guhathakurta,4,Railway,7,Raj,1,Ranking,4,Rape,1,RCEP,2,Real Estate,1,Recall,4,Recession,2,Red Sea,2,Referendum,5,Reforms,17,Refugee,23,Regional,4,Regulations,1,Rehabilitation,1,Religion & Spirituality,9,Renewable,13,Reports,38,Repository,1,Republicans,3,Rescue Operation,1,Research,4,Research and Development,20,Retail,36,Revenue Management,1,Risk Management,4,Robotics,8,Rohingya,5,Romania,2,Royal Canadian Air Force,1,Rupee,1,Russia,269,Russian Navy,5,Saab,1,Saadat,1,SAARC,6,Safety,1,SAFTA,1,SAM,2,Samoa,1,Sanctions,3,SAR,1,SAT,1,Satellite,12,Saudi Arabia,122,Scandinavia,6,Science & Technology,335,SCO,5,Scotland,6,Scud Missile,1,Sea Lanes of Communications,4,SEBI,1,Securities,1,Security,6,Semiconductor,3,Senate,4,Senegal,1,SEO,3,Serbia,4,Seychelles,1,SEZ,1,Shale Gas,4,Shanghai,1,Sharjah,12,Shia,6,Shinzo Abe,1,Shipping,5,Shutdown,1,Siachen,1,Sierra Leone,1,Signal Intelligence,1,Sikkim,4,Silicon Valley,1,Silk Route,6,Simulations,2,Sinai,1,Singapore,13,Situational Awareness,16,Smart Cities,7,Social Media Intelligence,40,Social Policy,39,Social Science,1,Socialism,1,Soft Power,1,Software,7,Solar Energy,11,Somalia,5,South Africa,18,South America,45,South Asia,405,South China Sea,31,South East Asia,61,South Korea,42,South Sudan,4,Sovereign Wealth Funds,1,Soviet,2,Soviet Union,7,Space,40,Space Station,2,Spain,8,Special Forces,1,Sports,2,Sports Diplomacy,1,Spratlys,1,Sri Lanka,22,Stamps,1,Startups,43,State of the Union,1,STEM,1,Stephen Harper,1,Stock Markets,18,Storm,2,Strategy Games,5,Sub-Sahara,3,Submarine,13,Sudan,5,Sunni,6,Super computing,1,Supply Chain Management,37,Surveillance,8,Survey,5,Sustainable Development,16,Swami Vivekananda,1,Sweden,3,Switzerland,3,Syria,111,Taiwan,20,Tajikistan,11,Taliban,17,Tamar Gas Fields,1,Tamil,1,Tanzania,4,Tariff,4,Taxation,23,Tech Fest,1,Technology,13,Tel-Aviv,1,Telecom,22,Telematics,1,Territorial Disputes,1,Terrorism,74,Testing,2,Texas,3,Thailand,7,The Middle East,606,Think Tank,290,Tibet,2,TikTok,1,Tobacco,1,Tonga,1,Total Quality Management,2,Town Planning,2,TPP,2,Trade Agreements,13,Trade War,9,Trademarks,1,Trainging and Development,1,Transcaucasus,16,Transcript,4,Transpacific,2,Transportation,39,Travel and Tourism,7,Tsar,1,Tunisia,7,Turkey,73,Turkmenistan,9,U.S. Air Force,3,U.S. Dollar,2,UAE,132,UAV,21,UCAV,1,Udwains,1,Uganda,1,Ukraine,94,Ukraine War,7,Ummah,1,UNCLOS,6,Unemployment,1,UNESCO,1,UNHCR,1,UNIDO,2,United Kingdom,69,United Nations,27,United States,654,University and Colleges,4,Uranium,2,Urban Planning,10,US Army,8,US Army Aviation,1,US Congress,1,US FDA,1,US Navy,15,US Postal Service,1,US Space Force,2,USA,16,USAF,19,UUV,1,Uyghur,3,Uzbekistan,12,Valuation,1,Vatican,1,Vedant,1,Venezuela,18,Venture Capital,3,Victim,1,Videogames,1,Vietnam,18,Virtual Reality,7,Vision 2030,1,VPN,1,Wahhabism,3,War,1,War Games,1,Warfare,1,Water,16,Water Politics,6,Weapons,10,Wearable,2,Weather,2,Webinar,1,WEF,2,Welfare,1,West,2,West Africa,19,West Bengal,2,Western Sahara,2,Whitepaper,2,WHO,3,Wikileaks,1,Wikipedia,1,Wildfire,1,Wildlife,2,Wind Energy,1,Windows,1,Wireless Security,1,Wisconsin,1,Women,10,Women's Right,10,Workshop,1,World Bank,27,World Economy,24,World Peace,10,World War I,1,World War II,3,WTO,6,Wyoming,1,Xi Jinping,9,Xinjiang,1,Yemen,26,Zbigniew Brzezinski,1,Zimbabwe,2,
ltr
item
IndraStra Global: India’s Tryst with Next-Gen Nuclear Energy Systems
India’s Tryst with Next-Gen Nuclear Energy Systems
By Dr. Sitakanta Mishra, Pandit Deendayal Petroleum University
https://3.bp.blogspot.com/-Z_OWo7tJYlw/WawMBqhodqI/AAAAAAAAQIU/s1XbCpSXn9M_R29P7sz04zvE9EQhIvK3ACLcBGAs/s640/nuclear-project-southern-policeman-indian-kudankulam-power_6b1b7f24-1375-11e7-85c6-0f0e633c038c.jpg
https://3.bp.blogspot.com/-Z_OWo7tJYlw/WawMBqhodqI/AAAAAAAAQIU/s1XbCpSXn9M_R29P7sz04zvE9EQhIvK3ACLcBGAs/s72-c/nuclear-project-southern-policeman-indian-kudankulam-power_6b1b7f24-1375-11e7-85c6-0f0e633c038c.jpg
IndraStra Global
https://www.indrastra.com/2017/09/India-s-Tryst-with-Next-Gen-Nuclear-Energy-Systems-003-09-2017-0008.html
https://www.indrastra.com/
https://www.indrastra.com/
https://www.indrastra.com/2017/09/India-s-Tryst-with-Next-Gen-Nuclear-Energy-Systems-003-09-2017-0008.html
true
1461303524738926686
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share to a social network STEP 2: Click the link on your social network Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content